

Factors Affecting MAOP

- Class location (Steel pipelines)
- Design of pipe and components
- System pressure or leakage test
- Operating history
- Overpressure protection

§192.619 (a)

No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating pressure determined under paragraph (c) or (d) of this section, or the lowest of the following:

- Design pressure of weakest element
- Test Pressure (de-rated by class location factor)
- MOP during the 5 years preceding applicable date
- Maximum safe pressure determined by the operator

Design Pressure

The pressure for which a pipeline or segment of a pipeline is designed using appropriate engineering parameters, formulas, and component pressure ratings

Test Pressure

 Tested according to the requirements of Subpart J and operators procedures

MAOP based on Test Pressure

- Test Pressures also includes:
 - Pipe replacements
 - Ensure pretested pipe to appropriate pressures
 - Fabricated components
 - ASME Vessels
 - ASME only to 1.3 times, must consider Part 192 requirements

§192.619

- Design pressure of weakest element
- Test Pressure (de-rated by class location factor)
- MOP during the 5 years preceding applicable date
- Maximum safe pressure determined by the operator

§192.619

- Design pressure of weakest element
- Test Pressure (de-rated by class location factor)
- MOP during the 5 years preceding applicable date
- Maximum safe pressure determined by the operator

MAOP cannot exceed the **LOWEST** of:

- Design pressure of weakest element
- Test Pressure (de-rated by class location factor)
- MOP during the 5 years preceding applicable date
- Maximum safe pressure determined by the operator

§192.619 (b)

 If MAOP established by a maximum safe pressure (§192.619(a)(4)), must have overpressure protective devices installed on the segment in a manner that will prevent the maximum allowable operating pressure from being exceeded, in accordance with §192.195.

§192.619 (c)

The requirements on pressure restrictions in this section do not apply in the following instance.

§192.619 (c) (Grandfather Clause)

An operator may operate a segment of pipeline found to be in satisfactory condition, considering its operating and maintenance history, at the highest actual operating pressure to which the segment was subjected during the 5 years preceding the applicable date in the second column of the table in paragraph (a)(3) of this section.

- Gathering pipelines 3/15/2006
- Newly regulated gathering lines The five years prior to the date the line becomes regulated

Steel MAOP Calculation

Steel transmission line constructed in 1995 6", Grade B pipe, 0.280 wall thickness Installed in a Class 2 location Valves, fittings ANSI 300 (740 psig) Tested to 650 psig for 8 hours

What is the MAOP?

• §192.105 - Design of Steel Pipe

$P = (2St/D) \times F \times E \times T$

S=Grade of pipe

t = thickness

D=diameter

F=Design Factor §192.111

E=Longitudinal Joint Factor §192.113

T=Temperature Derating Factor §192.115

MAOP Steel Pipe -§192.619(a)

 §192.105 – Design of Steel Pipe P = (2St/D)xFxExT P = ((2x35,000x0.280)/6.625)x0.6x1x1 P=1775 psig for pipe

Fittings – ANSI 300 = 740 psig

MAOP by Design - 740 psig

§192.619 (a)

- Design pressure of weakest element = <u>740 psig</u>
- Test Pressure (de-rated by class location factor)
- MOP during the 5 years preceding applicable date
- Maximum safe pressure determined by the operator

• Test Pressure (de-rated by class location factor)

MAOP = Test Pressure/Class Location Factor Test Pressure = 650 psig Class Location Factor for class 2 = 1.25

MAOP = 650/1.25 MAOP by test pressure = 520 psig

- Design pressure of weakest element = <u>740 psig</u>
- Test Pressure = 520 psig
- MOP during the 5 years preceding applicable date
- Maximum safe pressure determined by the operator

MAOP Steel Pipe – §192.619 (a)(3)

• The highest operating pressure in the 5 years preceding applicable date

- Onshore pipelines 7/1/1970
- Gathering pipelines 3/15/2006 or date line becomes subject to this part, whichever is later

Not applicable, built in 1995

§192.619 (a)

- Design pressure of weakest element = <u>740 psig</u>
- Test Pressure = <u>520 psig</u>
- MOP during the 5 years preceding applicable date = <u>NA</u>
- Maximum safe pressure determined by the operator

Steel MAOP Calculation

Steel transmission line constructed in 1964 6", Grade B pipe, 0.280 wall thickness Installed in a Class 1 location Valves, fittings ANSI 300 (740 psig) Tested to 900 psig for 12 hours Operated at 900 psi in 1968

What is the MAOP?

• §192.105 - Design of Steel Pipe

$P = (2St/D) \times F \times E \times T$

S=Grade of pipe

t = thickness

D=diameter

F=Design Factor §192.111

E=Longitudinal Joint Factor §192.113

T=Temperature Derating Factor §192.115

MAOP Steel Pipe -§192.619(a)

§192.105 – Design of Steel Pipe

 P = (2St/D)xFxExT
 P = ((2x35,000x0.280)/6.625)x0.72x1x1
 P = 2130 psig (6.625")
 P = 2352 psig (6")

Fittings – ANSI 300 = 740 psig
MAOP by Design = 740 psig

The highest operating pressure in the 5 years preceding applicable date

- Onshore pipelines 7/1/1970
- Gathering pipelines 3/15/2006 or date line becomes subject to this part, whichever is later
- Operated at 900 psi in 1968

MAOP by 5 year is 900 psig

- Design pressure of weakest element = <u>740 psig</u>
- Test Pressure = <u>818 psig</u>
- MOP during the 5 years preceding applicable date = <u>900 psig</u>
- Maximum safe pressure determined by the operator

Plastic MAOP Calculation

Plastic line constructed in 2005 2", PE 3408, SDR =11 Installed in a Class 2 location Tested to 150 psig

What is the MAOP?

§192.619 (a)

- Design pressure of weakest element
- Test Pressure (de-rating factor)
- MOP during the 5 years preceding applicable date
- Maximum safe pressure determined by the operator

§192.121 – Design of Plastic Pipe
P = (2S/SDR – 1) x DF

S = HDB (Hydrostatic Design Basis) in accordance with listed specification at given temperature = 1600 SDR = Standard dimension ratio = 11 DF=Design Factor 0.32

MAOP Plastic Pipe -§192.619 (a)(3)

• The highest operating pressure in the 5 years preceding applicable date

- Onshore pipelines - 7/1/1970

 Gathering pipelines – 3/15/2006 or date line becomes subject to this part, whichever is later

Not applicable, built in 2005

34

High Pressure Distribution System

A distribution system in which the gas pressure in the main is higher than the pressure provided to the customer. (Service Regulators)

§192.621 MAOP High Pressure Distribution Systems

Lowest of the following:

Design (redundant from §192.619)

60# - unless service lines equipped with pressure limiting devices meeting §192.197(c)

§192.621 MAOP High Pressure Distribution Systems

- 25# Cast Iron Pipe if there are Unreinforced Bell and Spigot Joints
- "The Pressure Limits to which a Joint could be Subjected without the Possibility of its Parting."
- Maximum Safe Pressure determined by the Operator ~Must provide Overpressure Protection per §192.195 (Redundant from §192.619)

§192.623 – Low Pressure Distribution Systems

 <u>Maximum</u> and Minimum Allowable Operating Pressure

Cannot operate at a pressure high enough to make unsafe the operation of properly adjusted low -pressure gas burning equipment.

§192.623 – Low Pressure Distribution Systems

 <u>Maximum</u> and Minimum Allowable Operating Pressure

 Cannot operate at a pressure lower than the minimum pressure at which the safe and continuing operation of any properly adjusted low-pressure gas burning equipment can be assured.

Conversion of Service §192.14

 Steel pipeline previously used in service not subject to this part qualifies for use under this part if:

- Pipeline must be tested according to Subpart J
- MAOP established by Subpart L (§192.619)

Established MAOP

Do not have to operate at MAOP

- Down rate pipe according to maximum safe pressure §192.619(a)(4)
- Install pipe or component that does not comply with design formula or pressure requirements
- -Install untested or low tested pipe
- -Class location change §192.611

- May have temporary pressure reductions due to:
 - Operations and maintenance issues
 - Safety related conditions
 - IM requirements

- Pressure reductions due to PHMSA orders

Fitness for Service

Fitness for service is the ability of a system or component to provide continued service, within established regulations and margins for safety, until the end of some desired period of operations or scheduled inspection or reassessment.

Fitness for Service

Fitness for service is the pipelines ability to operate in a manner that ensures the safety of the people that live and work near pipelines, protects the environment, while dependably transporting natural gas from sources to markets. (INGAA)

MAOP Records

ADB 11-01 – Establishing MAOP/MOP using records

ADB 12-06 - Verification of Records Establishing MAOP and MOP.

Verify MAOP

- Recommend follow requirements similar to §192.555 or §192.557
 - Review the design, operating, and maintenance history of the segment of pipeline to determine whether the proposed increase is safe and consistent with the requirements of this part; and
 - Make any repairs, replacements, or alterations in the segment of pipeline that are necessary for safe operation at the increased pressure.
 - Written plan for procedure, maintain records

